
An Access Control Metamodel
for Web Service-Oriented Architecture

Christian Emig, Frank Brandt, Sebastian Abeck
Research Group Cooperation & Management

Universität Karlsruhe (TH)
76128 Karlsruhe, Germany

{ emig | brandt | abeck } @ cm-tm.uka.de

Jürgen Biermann, Heiko Klarl
iC Consult GmbH

Keltenring 14, 82041 Oberhaching
Germany

{ biermann | klarl } @ ic-consult.de

Abstract — With the mutual consent to use WSDL (Web Service
Description Language) to describe web service interfaces and
SOAP as the basic communication protocol, the cornerstone for
web service-oriented architecture (WSOA) has been established.
Considering the momentum observable by the growing number
of specifications in the web service domain for the indispensable
cross-cutting concern of identity management (IdM) it is still an
open issue how a WSOA-aware IdM architecture is built and
how it is linked with WSOA’s main elements, the web services
providing functional core concerns. In this paper we present an
access control model for WSOA and a blueprint of a WSOA-
aware authorization verification service which is part of the IdM
architecture. We show the integration of this service with WSOA
consisting of both basic and composite web services. Our solution
has been tested and evaluated in an implementation case study.

Keywords — Access Control Model, Identity Management
(IdM), Web Service-Oriented Architecture (WSOA), Metamodel,
Policy Decision Point (PDP), Business Process Execution
Language (BPEL)

I. INTRODUCTION

A. Background
Currently most enterprises try to align their business

processes with the supporting IT by migrating towards web
service-oriented architecture (WSOA). Web service
technologies are commonly recognized as a promising way for
the implementation of SOA. However, WSOA is not meant to
be built from scratch but rather the functionality of existing
systems and their components have to be leveraged to web
services. Bottom-up approaches start with the existing software
systems and ease traditional application integration: web
services feature standardized interfaces described using WSDL
(Web Service Definition Language) as well as a standardized
communication protocol, namely SOAP, which both are
commonly accepted. The integration process can then be
applied by the composition of web services of heterogeneous
underlying software systems using process execution languages
like BPEL (Business Process Execution Language) [1]. Top-
down approaches start with business processes and focus at
their model-driven mapping down to basic and composite web
services. They enable business analysts to perform so-called
programming-in-the-large, the system-independent

orchestration of business-related (web) services along business
processes [2].

B. Motivation
Besides the development of WSOA’s core concerns (cf. to

aspect-oriented programming, [3]) there are several cross-
cutting concerns that have to be addressed before being able to
go productive with WSOA – a central one is to enable security,
especially access control. Access control consists of
authentication and authorization verification. Looking at the
mass and complexity of the existing and upcoming
specifications in the web service security area like WS-
Security, WS-Trust, SAML, XACML or the Liberty Alliance’s
stack proposal, it is comprehensible that software developers
often neglect the web service security part. Additionally, state-
of-the-art IdM suites are not yet prepared for WSOA [4] as
well as current application servers often do not as yet support a
necessary combination of relevant IdM standards. This is why
currently the existing web services in most cases have little or
no security features. Complications even increase when
composing several web services which provide functionality
from different underlying applications – workarounds like
using the applications’ built-in IdM are no longer applicable;
an overall IdM architecture for WSOA is needed.

In this paper we enhance and improve existing access
control models in respect to WSOA. The development of an
appropriate access control model is a highly relevant
prerequisite because the migration towards WSOA implies a
strongly increasing number of objects (i.e. web services)
combined with a looser coupling between subjects and objects.
State-of-the-art models like role-based access control (RBAC)
[5] do not scale in WSOA and need to be enhanced [6].
Secondly, we present an architectural blueprint for a WSOA-
aware IdM authorization verification service following this
access control model and motivate its integration with
WSOA’s core concern part. Therefore we extend the view on
WSOA from the functional perspective towards access control.
Leveraging the functionality of existing applications to
interoperable services interfaces using application servers (so-
called “wrapping to web services”) allows the composition of
these web services, technically implemented using process
execution environments like BPEL engines. Though slicing
down existing applications for the encapsulation of their core
functionality at service interfaces, access control has to be

enforced – at least to the same extent as it has been previously
within the application boundaries.

The contributions of this paper are:

1. An access control metamodel for WSOA revealing all
relevant sets and relations necessary to calculate
authorization verification requests. The goal is to respect
WSOA-specifics like the loose coupling of basic and
composite web services as well as the increasing amount
of both subjects and objects – a fact that prevents scaling
of existing models.

2. A WSOA-aware authorization verification service
implemented as a policy decision point (PDP) applying our
access control model. This service is a central element of
the IdM architecture needed to enforce access control for
WSOA’s core concern services, both basic and composite.
From the core concern perspective, the complexity of the
IdM architecture is to be encapsulated at a minimum set of
service interfaces which should not have domain-specific
characteristics.

The paper is organized as follows: section 2 introduces the
architecture of web service-oriented architecture (WSOA) and
derives the requirements for an appropriate access control
model and the corresponding IdM architecture. In section 3 we
discuss related work on access control models and propose our
enhancement towards WSOA. In section 4 we motivate the
design of a WSOA-aware authorization verification service
implementing our access control model; the integration with
WSOA’s core concern part is explained. In section 5, our
approach is applied and evaluated in a case study. A conclusion
and an outlook on future work in this area close the body of the
paper.

II. WEB SERVICE-ORIENTED ARCHITECTURE AND
THE REQUIREMENTS FOR IDENTITY MANAGEMENT

To be able to derive requirements for an access control
model for web service-oriented architecture (WSOA), an
overview of the architecture of WSOA’s core concern
structure is given in this section.

A. Basics of Web Service-Oriented Architecture
The basic WSOA layering as depicted in figure 1 consists

of existing applications at the bottom layer that are wrapped to
(basic) web services. The wrapping is done using application
servers applying the design patterns proxy or façade as
described in [7]. Web services can be composed at an
integration layer using BPEL and web portals are used to
integrate the (human) users utilizing existing web technology
like web browsers. A key driver for WSOA is the closer
alignment of business processes with their supporting IT. This
is why the focus in IT changes from the (internal) view on
systems and application towards operated and quality-assured
IT services [8]; as a result, the aforementioned further layers
are introduced and put on top of the existing applications.
These services are defined at standardized interfaces at the
basic web services and the integration layer using the UML
ball / socket notation combined with a WSDL/SOAP
constraint (cf. figure 1). Using standardized interfaces eases
the traditional integration process especially in heterogeneous

environments, i.e. with existing applications of different
brands with vendor-specific and incompatible interfaces,
depicted at the legacy systems at the bottom of figure 1.
Additionally it allows flexible service reuse in different
business processes. The description of this common core of
WSOA can be found in many publications [9, 10, 11, 12].

SOA
Core Concerns

Existing
Applications,
Components,
Databases

Basic Web
Services

Integration
Layer

Presentation
Layer Portal

Legacy
Application

Legacy
Application

Legacy
Application

Legacy
Application

Application
Server

Application
Server

WSDL/SOAP

Authentication

Authorization

SOA-aware
IdM Architecture

Application
Server

Application
Server

BPEL
Engine
BPEL
Engine

Vendor-Specific

WSDL/SOAP WSDL/SOAP

Figure 1. Architecture of

Web Service-Oriented Architecture

It is important to notice that in the web service context,
SOA does not imply strict layering. Web services can be
accessed either directly or via one or many intermediaries like
BPEL engines. From WSOA’s viewpoint the service interface
of a BPEL-composed web service is not distinguishable from
a basic one as they are both described using WSDL.

B. Requirements for Identity Management
Besides further enhancements of WSOA’s core concern

part, fundamental questions arise: how is access control to be
handled in this highly distributed and service-oriented
environment? Slicing down existing applications to business
related services, the internal IdM structures of the legacy
systems are cut off. The alignment of the different system-
specific IdM access control models and techniques with the
goal of a local handling inside the applications complicates the
integrated view on identity management. Therefore the
development of a WSOA-wide, cross-cutting IdM architecture
is favored. Being SOA-aware itself, this architecture is meant
to expose its functionality at service interfaces decoupling core
concerns from IdM, especially access control [13]. Following
the paradigm of lose coupling [9] and separation of concerns
[14], the IdM part of SOA’s core concern services should be
reduced to the bare minimum.

Access control is based on two prerequisites: first of all, an
authentication process checking any possible credentials. This
can be done once with validity for a series of subsequent
accesses (relates to a single sign-on approach) or on every
access. User authentication can be handled at WSOA’s portal
layer and will not be discussed further in this paper. Secondly,
an authorization verification process is needed which checks if
permission has been granted for the authenticated subject to
invoke a WSOA service. In the following we will focus on this

process which is to be encapsulated to a service of the IdM
architecture.

Basic and composite services should not be put in charge
of verifying caller’s authorization themselves but they are to
be enabled to clearly separate this task from their core
concerns towards an authorization verification service.
Therefore they should hand over all relevant data (according
to our WSOA access control model) to the authorization
verification service allowing each application server and
BPEL engine to handle access control by calling the
authorization service of the IdM architecture as depicted in
figure 1.

III. AN ACCESS CONTROL METAMODEL FOR
WEB SERVICE-ORIENTED ARCHITECTURE

One major goal of identity management is to establish
effective access control that is the restriction of access to
resources. To enable access control in WSOA, an access
control model has to be developed adhering to WSOA’s
specifics. We describe this model as a conceptual metamodel.
This metamodel defines the sets and relations on which a
concrete access control decision can take place.

A. Related Work on Access Control Models
Formal access control models build the mathematical

foundation to restrict access to resources. In 1969, the basics
of access control were described very abstractly but formally
for the first time [15]. Here the concepts of “subjects” and
“objects” were introduced and it was suggested to link them
using an “access matrix”. This paradigm is now referred to as
identity-based access control (IBAC) as the permissions are
linked directly to the identity (i.e. the identifier) of the
requesting subject without further levels of indirection.

Efforts to develop a complete mathematical formulation of
access control have been undertaken in the early 1970s [16,
17]. Most of this work was sponsored by US defense sector.
The common sense at this point of time was that there is a set
of active entities, called subjects, and a set of passive (i.e.
protected) entities, called objects. To control the access to
objects, “security policies” were introduced basically
consisting of two elements; first the type of access request: if
“observation” (i.e. read) and / or if “alteration” (i.e. write /
append) was requested. Secondly, an ordered set of security
classification (e.g. unclassified, confidential, secret, top secret)
was combined with a set of formal categories. A pair of
classification and category was called “security level”. Access
control required a subject’s security level to dominate the
security level of the object. These models are called lattice-
based access control (LBAC). In [18] their limitations are
revealed: LBAC models are only effective for certain
coarsely-grained security scenarios like in the military and
lack both flexibility and scalability.

To overcome these limitations, the next step in evolution is
role-based access control (RBAC) as introduced in [19] and
refined in [5, 20, 21]. Although there are many different forms

of RBAC, all RBAC models have in common that there is a
level of indirection in the subject / object relation by focusing
the business role which a subject is performing. Access
permissions of an object are then linked to roles instead of
individual subjects. Because access permissions do not have to
be repeatedly assigned and maintained on a basis of individual
subjects – a number that is constantly increasing – RBAC both
significantly reduces administration overhead and scales much
better than both IBAC and LBAC.

With software engineering heading for WSOA the
traditional access control models need to be put to test again.
In WSOA, the amount of objects to be protected increases
significantly. Additionally the subject / object relation,
instantiated in a consumer / provider link, is meant to be much
more loosely coupled. In [6] a new access control model
called attribute-based access control (ABAC) is introduced.
Unlike IBAC and RBAC, in the ABAC model permissions are
defined merely on any security relevant characteristics of
subjects and objects, known as attributes. The goal is to almost
completely decouple the subject / object relation by
independently defining attributes of subjects, objects and
environment state. It is a logical enhancement of IBAC and
RBAC as the identity itself as well as the roles can be mapped
to attributes. Policies on different abstraction levels that are
defined on regular expressions consisting of attributes of
subjects, objects and environment parameters enforce access
control.

B. Heading for a WSOA-aware Access Control Metamodel
A problem shared by all aforementioned models is that the

“action” is always reduced to basic system operations like
read, write, delete, execute etc. This is problematic in WSOA
as there the objects to be protected are at a different
granularity. The most atomic object to restrict access to is a
web service operation. It is important to notice that the web
service operations are more similar to functions in
programming languages that are executed with a defined set of
parameters than like simple data objects that are manipulated.
Therefore the set of actions as defined in RBAC has to be
refined. In the web service context, it is not enough to define
access to a web service operation based on a combination of
permissions like read, write or execute. For example, a subject
might be allowed to invoke a web service operation allowing
the retrieval of personal data – but only if this is personal data
about the caller himself. Hence, the parameters of the web
service operation invocation must also be considered in the
access control model as well. Basically this enhances the
traditional RBAC actions which can be mapped to the fixed
value of execute but additionally takes the invocation
parameters into consideration for access control. A problem of
ABAC as described in [6] is the indirection between objects
and their access permissions. This unnecessary indirection
increases complexity as the development of appropriate
“loosely-coupled” policies is difficult

0..*

Attribute Assignment

0..* 0..*

1

11..*

0..*

0..*

0..*

Environment
Constraint
Environment
Constraint

Policy Assignment

Web Service
Operation

Composition of
Web Services

Parameter
Constraint

XX

Attribute Constraint

0..*

PermissionSubject 0..*

Environment
State Attribute

Subject
Attribute

Object

0..*
{ incomplete }

2..*

0..*

Parameter

consists of

Role HierarchyRole Hierarchy

1

has Business Role 0..*

0..*

Business Role

Input
Parameter

Output
Parameter

{ incomplete, disjoint }

Security
TokenCredentialsIdentifier

Policy

1

1..*

1

Figure 2. Metamodel for Access Control in Web Service-Oriented Architecture

A further specific of WSOA which must be dealt with is

explicit service composition. Composition takes place if a web
service calls different other web service operations and returns
a combined result. The access restriction to the composed
service has to be at least the sum of the restrictions of all
underlying operations it is composed of and that are invoked
mandatorily. This allows checking authorization at an earlier
stage (i.e. the BPEL-composed web service) thereby limiting
unnecessary calls ending in rollback operations if particular
permissions for invoked basic web service operations are
missing.

In figure 2 we present our metamodel for access control in
web service-oriented architecture (WSOA) using a conceptual
model in the UML 2.0 metamodeling approach to define the
sets and relations used to enforce access control. This
conceptual model is the first step towards development of a
UML profile which can be used for a model-driven
development of access control policies, which is not the focus
of this paper. Our metamodel is an enhancement of the
combination of hierarchical RBAC [5] and ABAC [6].

The central element of this model is Policy which is the
composition of Permissions. Permission itself defines the
traditional Subject / Object relation for a single service usage
context. Permissions are always positive in our metamodel
conferring to the ability of a subject (characterized by its
attributes) to perform some action on the associated object. In
access control literature negative permissions which deny
rather than confer access to an object are sometimes discussed.
In our metamodel denial of access is the default behavior and
if a permission is granted, it has to be modeled explicitly.
Nevertheless, it is possible to use negations in Permission’s

constraints. Permission combines one Object (related via the
Policy towards which it is aggregated) and a set of Subject
Attributes with the possibility to have constraints considering
the Object’s associated Input Parameters and the Environment
State (like date, time or any other attribute related to neither
Subject nor Object). There are some special Subject Attributes
that we explicitly modeled as the subject’s Identifier, the
Credentials and a Security Token (which is of temporary
validity, i.e. refers to a session context).

In WSOA, Subjects can be either human users or active
system components (i.e. self-acting services). The fact that
there is a possible 1:n relation between a human user and a
Subject (i.e. a user having more than one identity) is not
explicitly modeled here as it is not relevant for the definition
of access control. Users having more than one identity
instantiate independent and different Subjects. Subjects are
characterized by a defined amount of Subject Attributes. From
the business perspective, Subjects act in the context of a
Business Role. In our model, the concept of Business Role
relates to a defined amount of (finer-grained) Subject
Attributes. Role Hierarchies can be defined as well, all
together finally mapping to a set of Subject Attributes. We do
not focus directly on (business) roles for access control so
there is no association between Business Role and Permission.
This is a major difference to RBAC as defined by [5].
Furthermore it is possible to derive Subject Attributes from the
role concept of RBAC: either the role itself can be defined as a
single Subject Attribute carrying the role’s name as the value
or it can map to a set of Subject Attributes; Permission then
links towards these Subject Attributes. This is both a major
difference to RBAC as we do not link the permission to a
(coarse-grained) Business Role but to a combination of Subject

Attributes as well as to the ABAC approach where the
(business) role is explicitly not in focus. We call the
composition of all Permissions for one specific Object (which
is in our case a Web Service Operation) Policy; so the
authorization of each Object is defined using exactly one
Policy. One goal of SOA is the reuse of existing services in
different contexts. This is why we use the concept of
Permission; each Permission covers one service usage context.
The Policy is the composition of all Permissions of an Object
using Boolean “OR” concatenation.

A major advantage of our metamodel is that we remove the
commonly used type of operation (e.g. read, write) [5] while
placing the Input Parameters of the Web Service Operation
into focus. So there are two relations from the Permission
towards the Object: a direct one towards the Input Parameter
(not backwards navigable) following the idea that a Parameter
does not need to know if its value is evaluated for access
control and an indirect one via the Policy.

Service composition is one goal of service-oriented
architecture. This is why we explicitly address it in our
metamodel. A Composition of Web Services consists of
multiple invocations of other Web Service Operations in a
specific order [22]. It has a web service interface like the basic
web services consisting of operations. It can not be determined
if the service interface is a composite or a basic web service.
But service composition relates to access control in respect
that there should be the possibility to pre-verify authorization
at the layer of composite web services to be able to stop
execution in case of missing authorization at an early stage.
The composition aspect, modeled as an association class of the
aggregation of Web Service Operations in figure 2, enables the
authorization verification even at a composition level. For all
Web Service Operations that are obligatorily invoked by the
Composition, their Policies have to be added to the (overall)
Policy of the Composition of Web Service using Boolean
“AND” concatenation.

IV. DEVELOPMENT OF A WSOA-AWARE
AUTHORIZATION VERIFICATION SERVICE

The access control metamodel formally specifies the sets
and relations that are used to model permissions for access
control in concrete scenarios – the permissions are used to
calculate an authorization verification decision. In this section
we propose how to map this access control model to a WSOA-
aware authorization verification service.

The challenge can be divided into three parts: first of all,
the definition of the service interface towards WSOA’s core
concern part; secondly, the development of the business logic
which implements the functionality behind the service
interfaces. Last but not least, it is to be specified where and
how to store the data which is needed to verify authorization.
Which data repositories already exist in WSOA and how to
integrate them with the IdM architecture must be taken into
consideration. To describe our setup, we use a middle-out
approach beginning at the service interfaces following the IdM
data layer and finally describing the business logic. Our focus

is on authorization verification, so we neglect the
authentication and administration part of the IdM architecture.

Policy
Decision
Point

Policy
Store
Policy
Store

User
Directory
User
Directory
User
Directory

Service
Registry
Service
Registry

Authorization Authentication Administration

WSDL/SOAP

IdM
Business
Logic

IdM Service
Interfaces

IdM Data

Figure 3. WSOA-aware IdM Architecture

Focusing Authorization Verification

A. Service Interface Definition
In the following we outline the central operation of the

authorization service using WSDL 1.1 [23].
<definitions name="Authorization" ...>

 <types>

 <!-- Definition of char, string, ArrayOfChar,
 ArrayOfString -->

 </types>

 <message name="AuthZ_Msg_Req">

 <part name="security_token" type="ArrayOfChar" />

 <part name="object_id" type="string" />

 <part name="input_parameters" type="ArrayOfString" />

 </message>

 <message name="AuthZ_Msg_Resp">

 <part name="result" element="boolean" />

 </message>

 <portType name="Authorization_SOAP">

 <operation name="Authorization_Verification">

 <input message="AuthZ_Msg_Req" />

 <output message="AuthZ_Msg_Resp" />

 <operation>

 </portType>

 <binding ... />

 <service name="Authorization" ... />

</definitions>

We concentrate on the definition of the messages that are
exchanged. The incoming message carries the subject’s
security token, which speaking very generally is an array of 8-
bit characters. The object identifier is required as well; we put
it to the type of string as not in all scenarios are the identifiers
only numeric. The input parameters of the web service

operation are sent as an array of strings. The message response
carries the decision of the authorization verification request as
a Boolean value.

The authorization verification service can be called by any
application server as depicted in figure 1. According to the
access control metamodel, inside the application servers
nothing has to be evaluated, only the input parameter of the
invoked web service operation along with the caller’s security
token have to be combined with the web service operation’s
(unique) object identifier and sent to the authorization service.
The return value is a Boolean value (true/false). This enables
efficiency through separations of concerns for WSOA’s core
concern part. It can be called from both composite (i.e. BPEL)
and basic web services.

B. Data Repositories
1) User Directory
The user directory stores information about subjects and

their attributes according to our access control model. There
are many ways of implementing a user directory besides a
single-system approach, like meta directories, virtual
directories or a directory replication network. This is not the
focus of this publication; we assume that the business logic
can access the data. Subjects are assigned a unique identifier
to be able to distinguish them. During authentication, a
subject’s credentials are verified and a time-limited security
token is returned that is piggybacked with every web service
operation call.

2) Policy Store
Web service operations can be reused in different scenarios.

As a consequence, an access policy of an object is usually a
combination of permissions of the individual access contexts.
To enable efficient authorization verification, we suggest
aggregating the permissions for each object using a disjunctive
normal form (DNF). DNF is a standardization of a logical
formula which is a disjunction of conjunctive clauses. The
conjunctive clauses are the context-sensitive permissions and
the disjunction (represented by a Boolean OR) concatenates
the different contexts. An access policy is stored as a pair of
object identifier and the DNF-style expression.

3) Service Registry
When developing an IdM architecture, the link to WSOA’s

service registry should not be neglected. Here all information
about WSOA’s services, both composite and basic, is stored.
The goal is to extend this existing data store by adding a
unique object identifier to each of WSOA’s web service
operations at deployment. This is the object identifier which is
used in the policy store to add the access policies to each web
service operation.

C. Business Logic
The component handling authorization verification is

usually called policy decision point (PDP). The PDP does the
verification if a subject is allowed to invoke a web service
operation. First of all, the access policy for the object is
retrieved from the policy store. As the PDP does not receive
the subject’s identifier itself but the subject’s (temporary)
security token, there has to be a lookup, if the token is valid
and which subject it can be mapped to. The mapping is done

towards the subject’s identifier. Then the subject attributes and
the environment attributes defined in the policy are obtained
and finally the policy is evaluated to a Boolean value.

D. Bridging the Gap Towards WSOA’s Core Concerns
The IdM architecture needs to be linked to WSOA’s core

concern part consisting of basic and composite web services.
The question where to put the policy enforcement point (PEP)
which invokes the authorization verification service has
already been discussed in [24]. Considering the architecture of
web service-oriented architecture as depicted in figure 1, the
PEPs are put as distinctive components into each application
server, both the ones hosting basic web services as well as
those hosting BPEL engines which provide support for
composite web services. This enables each of the components
implementing a single web service operation to do a call to the
applications server’s local PEP which handles the
communication with the PDP.

V. IMPLEMENTATION EXPERIENCE
In this section we exemplarily present how we put our

access control model and authorization verification service
into practice within an integration project being pursued at our
university.

A. Case Study
In our case study, we focus on two different applications

which are used to generate certificates in the university
context, so called transcripts of records (ToR). One of these
two systems is SAP R/3 Campus Management, the other one
is a HIS system. Both are commonly used at European
universities. The starting point, depicted on the left side of
figure 4, had already been implemented: ToR generation is
implemented as a BPEL process using Oracle SOA Suite with
Oracle BPEL process manager. The wrapping to web services
of the SAP and HIS systems had been done using JBoss
Application Server and BEA Weblogic. At each application
server, a policy enforcement point (PEP) following the “secure
service agent” design pattern is installed handling the
communication towards the authorization service [24].

SOA – Core Concern Part SOA-aware IdM Architecture

Existing
Applications,
Components,
Databases

Basic Web
Services

Integration
Layer

Presentation
Layer Portal

Policy
Decision
Point

Policy
Decision
Point

MySQL-DB
Token
Repository

MySQL-DB
Token
Repository

MySQL
Policy
Store

MySQL
Policy
Store

Oracle
SOA Suite
with
BPEL PM

PEPPEP

JBoss AS

:Comp1
PEPPEP

:Comp2 :Comp3

HIS
HR Application

HIS
HR Application

SAP R/3
Campus

Management

:ToR

BEA
Weblogic

BEA
Weblogic

Secure
Token
Service

Secure
Token
Service

User/
Service/Policy
Administration

User/
Service/Policy
Administration

LDAP
User
Directory

LDAP
User
Directory

LDAP
User
Directory

jUDDI
Service
Registry

jUDDI
Service
Registry

WSDL

WSDL

WSDL

Authorization Authentication Administration

3
2

1 10

6 9

5
4

PEPPEPPEPPEP

8
7

Figure 4. Case Study: Securing BPEL-composed

Generation of Transcript of Records

Now the challenge is to derive the policies for the
generation of a transcript of records (ToR). First, we start with
an informal description. We assume that there are (at least)
two different usage contexts:

• A student wants to get a ToR. He is only allowed to get
his own ToR.

• A student counselor needs a ToR for consultation. He is
allowed to get the ToR of any student.

<<Subject>>
StudentUser

<<Identifier>> id: String
<<Security Token>> token: String
<<SubjectAttribute>> matriculation: String
<<SubjectAttribute>> role: String
…

<<Subject>>
StudentUser

<<Identifier>> id: String
<<Security Token>> token: String
<<SubjectAttribute>> matriculation: String
<<SubjectAttribute>> role: String
…

<<Web Service Operation>>
FetchExamResults

<<Identifier>> object ID: String
<<InputParameter>> matriculation:

String

<<Permission>>
StudentPermission

StudentUser.matriculation ==
FetchExamResults.matriculation

AND

StudentUser.role == “Student”

<<Permission>>
CounselorPermission

CounselorUser.role == “Counselor”

<<Permission>>
CounselorPermission

CounselorUser.role == “Counselor”

<<Policy>>
FetchExamResultsPolicy

<<Subject>>
CounselorUser

<<Identifier>> id: String
<<Security Token>> token: String
<<SubjectAttribute>> role: String
…

<<Subject>>
CounselorUser

<<Identifier>> id: String
<<Security Token>> token: String
<<SubjectAttribute>> role: String
…

<<Business Role>>
Student

<<Business Role>>
Student

<<Business Role>>
Counselor

<<Business Role>>
Counselor

Figure 5. Exemplary Access Control Model

for ToR Generation

In figure 5 we exemplarily show how this informal model is
depicted as a UML model at M1 level using our access control
metamodel. On the right hand side, there is a basic web
service operation, which retrieves exam results for the
matriculation number that is handed over. Each web service
operation has a unique object identifier. As it is used in two
contexts, there are two permissions that are explicitly modeled
and combined in the policy. The first context depicts a Student
who tries to execute this operation; than the StudentPermission
is evaluated. In case a Counselor tries to get access, the
CounselorPermission is verified. The combination of both
Permissions forms the Policy which is attached to the Web
Service Operation.

Now we place this model into a real world system. The
signature of the web service interface of the ToR generating
service (which is BPEL-composed) is quite simple, just the
matriculation number is needed for which the ToR should be
generated. The name of the operation’s input parameter is
‘matriculation’. In our implementation, we use “s” as
abbreviation for “subject” and “param” for “input parameter”.
Environment state attributes like date or time can be accessed
using “esa”. Following the “secure service agent” design
pattern, the parameter carrying the subject’s security token is
automatically added to the operation’s signature. When the
web service is published in the service registry, an object
identifier is assigned for each operation. This identifier is then
used in the policy store to enable a quick lookup for the
policy.

Object ID Access Policy
… …
14 ((s. role == ‘Student’ AND s.matriculation ==

param.matriculation)
OR
(s.role == ‘Counselor’))

… …
19 TRUE
… …
165 ((s. role == ‘Student’ AND s.matriculation ==

param.matriculation)
OR
(s.role == ‘Counselor’))

AND

TRUE

… …
Table 1. Executable Policies

Table 1 shows an extract of our policy store. Three policies

are needed for the generation of the ToR: object id 14 is the
basic web service operation retrieving exam results for a
defined matriculation number. Object id 19 corresponds to the
web service operation obtaining lecture information – this is
allowed for everyone which results in a policy directly relating
to TRUE. Object 165 is the BPEL process which is assigned
(at least) the same policies of the invoked operations.
Additionally, further constraints can be added. We used a
MySQL database to store the policies and a Java-based PDP
(stateless session bean running on JBoss AS) for the
calculation.

B. Performance Evaluation
For performance evaluation of our approach we compare the

BPEL-based ToR generation with and without authorization
verification. For automated testing we used Parasoft’s
SOAtest™ [25]. We put the BPEL-Process ToR on one
machine running Windows 2003 Server with Oracle BPEL
Process Manager 10.1.3, the two basic web services wrapping
the legacy systems were put on two different machines both
running SuSE Linux 10.1 and JBoss Application Server 4.0.5.

Measured Object Min Avg Max

BPEL-Process ToR (w/o AuthZ) 391 860 2644
Basic Web Service 1 (w/o AuthZ) 125 152 921
Basic Web Service 2 (w/o AuthZ) 31 47 797

BPEL-Process ToR (with AuthZ) 553 1026 2838
Basic Web Service 1 (with AuthZ) 172 203 1207
Basic Web Service 2 (with AuthZ) 73 92 810
Table 2. Performance Measurement (in Milliseconds)

We measured two different scenarios, each of them having

three targets. The first scenario was without authorization
verification. The second was done with authorization
verification thereby illustrating how time consuming this can
be. The three targets are the complete BPEL process
(including the basic web service calls) and two basic web

services individually. We measured the runtime from the
service invocation until the response message was returned.

We calculated that most of the values are close to the

average, the standard deviation was minimal in all six cases.
The few outliners result in higher network traffic. That is why
we concentrate on the average values. Web service 1 is
connected to an SAP R/3 system which resides on another
system whilst web service 2 is directly connected to the
database of the HIS system. This is the reason for the
difference in average execution times of approximately 100
ms. The performance measurement reveals that the additional
call to the authorization verification service costs an average
of 50 ms per call. For the entire BPEL process this results in
150 ms as there are three calls altogether – which is a surplus
in processing time of 20%.

VI. CONCLUSION AND FUTURE WORK
In this paper we presented an approach how to handle

authorization verification in web service-oriented architecture
(WSOA). Therefore we designed an access control metamodel
which enhances existing models to better suit the requirements
of WSOA. We used this access control metamodel for the
development of an authorization verification service which is
part of the identity management architecture. We illustrated
how it is linked with WSOA’s core concern part and
demonstrated the feasibility of our approach in a case study.

Our next steps concerning identity management for WSOA
are to consider a conjoint and model-driven development of
WSOA’s core concern services with their associated access
policies. Starting from computational independent models at
the business process level, they can be derived to platform
independent models and transformed to platform specific
models (i.e. IdM architecture-specific) which are effective
calculable policies. To enable interoperability, we will attempt
the alignment of our approach with OASIS’s eXtensible
Access Control Markup Language (XACML) [26].

REFERENCES
[1] Christian Emig, Jochen Weisser, Sebastian Abeck: Development of

SOA-Based Software Systems – an Evolutionary Programming
Approach, IEEE Conference on Internet and Web Applications and
Services ICIW’06, Guadeloupe / French Caribbean, February 2006.

[2] Christian Emig, Christof Momm, Jochen Weisser, Sebastian Abeck:
Programming in the Large based on the Business Process Modeling
Notation, Lecture Notes in Informatics (LNI) 68 GI 2005, pp. 627-631,
September 2005.

[3] T. Elrad, R. E. Filman, A. Bader, Guest Editors: Aspect-Oriented
Programming. In: Communications of the ACM. Oktober 2001, Vol. 44,
No. 10, 29–32.

[4] Mike Neuenschwander: Enterprise Identity Management Market 2006–
2007, Burton Group Identity and Privacy Strategies, November 2006.

[5] D. F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. R. Kuhn, Ramaswamy
Chandramouli: Proposed NIST standard for role-based access control,
ACM Transactions on Information and System Security (TISSEC),
Volume 4 , Issue 3, p. 224 – 274, August 2001.

[6] Eric Yuan, Jin Tong: Attribute Based Access Control (ABAC) for Web
Services, IEEE International Conference on Web Services (ICWS 2005),
Orlando Florida, July 2005.

[7] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design
Patterns, Addison Wesley, 1998.

[8] Frank Leymann: Web Services - Distributed Applications without
Limits, Business, Technology and Web, Leipzig, 2003.

[9] Ali Arsanjani: Service-Oriented Modeling and Architecture, IBM
developer works, 2004.

[10] Eric Newcomer, Greg Lomow: Understanding SOA with Web Services,
Addison Wesley Professional, December, 2004

[11] Object Management Group (OMG): The OMG and Service Oriented
Architecture, 2006.
http://www.omg.org/attachments/pdf/OMG-and-the-SOA.pdf

[12] Bernhard Humm, Markus Voss, Andreas Hess: Regeln für
serviceorientierte Architekturen in hoher Qualität, Informatik Spektrum,
Volume 29, Number 6 / December, 2006.

[13] Burton Group: Directory Landscape – Directory Products evolve
towards Identity Services, Version 1.0, November 2004

[14] Edsger Dijkstra. On the role of scientific thought. EWD 447, 30th
August 1974, Neuen, The Netherlands. Appears in: Edsger W. Dijkstra,
Selected Writings on Computing: A Personal Perspective, Springer-
Verlag, 1982. ISBN 0–387–90652–5, pp. 60–66.

[15] B.W. Lampson: Dynamic protection structures, AFIPS conference
proceedings, FJCC 1969, p27-38.

[16] Roger R. Schell, Peter J. Downey, Gerald J. Popek: Preliminary Notes
on the Design of Secure Military Computer Systems, MCI-73-1,
Electronic Systems Division, Hanscom AFB, Bedford, Massachusetts,
January 1973.

[17] D. Elliott Bell, Leonard J. La Padula: Secure Computer Systems – A
Mathematical Model, ESD-TR-73-278, Vol. II, AD 771 543, Electronic
Systems Division, Air Force Systems Command, Hanscom AFB,
Bedford, Massachusetts, November 1973.

[18] Ravi S. Sandhu: Lattice-Based Access Control Models, IEEE Computer,
November 1993, p. 9-19.

[19] D. F. Ferraiolo, D. R. Kuhn: Role Based Access Control, 15th National
Computer Security Conference, 1992.

[20] D. F. Ferraiolo, J. Cugini, D. R. Kuhn: Role Based Access Control:
Features and Motivations, Computer Security Applications Conference,
1995.

[21] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman Role-Based:
Access Control Models, IEEE Computer 29(2): 38-47, IEEE Press,
1996.

[22] Michael Hafner, Ruth Breu: Realizing Model Driven Security for Inter-
organizational Workflows with WS-CDL and UML 2.0, MoDELS 2005,
LNCS 3713, pp. 39-53, 2005.

[23] W3C: Web Services Description Language (WSDL), version 1.1, March
2001.
http://www.w3.org/TR/wsdl

[24] Christian Emig, Heiko Schandua, Sebastian Abeck: SOA-aware
Authorization Control, International Conference Software Engineering
Advances ICSEA’06, Tahiti / French Polynesia, November 2006.

[25] Parasoft SOAtest™, Product Homepage.
http://www.parasoft.com/jsp/products/home.jsp?product=SOAP

[26] OASIS eXtensible Access Control Markup Language (XACML) 2.0
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

All web references were verified on May 30th, 2007.

